

Jerome.Durand@renater.fr

IPv6 service on RENATER3

G6bone

Academics' story with IPv6

Then came Renater ...

IPv6 Pilot over Renater-2 (P6R2)

- May 2000
- A native IPv6 network
 - dedicated ATM VPN
- Deploy the production addressing plan
 - July 1999 : first sTLA allocation
- Same two-level topology as in G6bone
 - Academic sites
 - production addressing scheme
 - Industrial sites involved in research projects
 - 6bone addressing scheme
- Gain experience with a pre-production service

Renater's IPv6 Pilot topology

The Pilot experience

- Experience Using the protocol
 - Equipments
 - Cisco partnership
 - Addresses
 - Deploying a consistent scheme (/35) for the core and the sites
 - Routing
 - ISIS and BGP4+
- IPv6 resources allocation
 - Procedures and management
- IPv6 DNS
 - Deployment of the DNS service
 - Reverse zones delegation to RIs and end-users sites
- Management
 - IPv6 NOC within Renater-2 NOC
 - Management and monitoring tools
 - Set of looking glasses at the RIs

Towards a native IPv6 network

G6bone was an overlay network

- IPv6 traffic was encapsulated in IPv4 packets
- « independent » from Renater's underlying infrastructure
- P6R2, IPv6 pilot was/is a VPN of ATM PVCs

Goals

- Have a production IPv6 network
 - In the core
 - Allow Regional and Metropolitan Networks to deploy IPv6

Additional goals

As production addresses are available And sTLA expanded from /35 to /32

- Renumber the IPv6 pilot using a new addressing scheme
 - much simpler to be aligned on nibble boundaries !
- Keep a two-level hierarchy
 - A core backbone of Regional Interconnects (RI)
 - User sites connect to one or more RIs

Additional goals (2)

- Transition period
 - Offer the new connectivity
 - Keep the old infrastructure
 - Move step by step : no D day
- Gather non academic organisations in the G6bone addressing plan
 - Allow them to gain experience with IPv6 until commercial ISPs are ready
 - Have full IPv6 connectivity to the evolving Internet v6
- Connect the pilot to the SFINX (Renater's IX)
 - Peer with ISPs and non academic organisms
- Provide IPv6 connectivity to
 - National projects (RNRT/RNTL)
 - European projects (IST, Esprit)
 - ..

Toward a production IPv6 service

And now Renater-3 ...

- Why a production-like IPv6 service ?
- ATM removed ...
 - Move all network services on a unique topology
- Need of IPv6 transport
 - Research projects using IPv6
 - Sites with native IPv6 network
 - →install a native IPv6 core
 - \rightarrow run both versions of IP the same way
- Manage the IPv6 service with the same operational quality as for IPv4

Topology of Renater 3

Renater 3: Native support

- 2.5 Gbits/s backbone
- 30 Regional Nodes (NR)
- Native support on all regional nodes
 - Dual stack backbone \rightarrow IPv4 and IPv6
- Global IP Service
 - IPv4 unicast and multicast
 - IPv6 unicast
 - IPv6 and IPv4 carried without any distinction
- Experimental IPv6 multicast network
- Goal : achieve an equal level of
 - Performance
 - Availability
 - Management
 - Support

What is M6Bone?

- An IPv6 Multicast test network
- M6Bone started in July 2001 (Aristote association, G6 and Renater)
- 55 sites are connected today

Goals

- To offer IPv6 Multicast connectivity to interested sites
- Test and develop soft and equipments related to IPv6 Multicast technologies
- To deploy an advanced service on IPv6, in order to participate in the promotion of the protocol

The initial deployment

M6Bone topology (International sites)

M6Bone topology (European sites)

M6Bone (French sites)

The M6Bone dilemna

- Few routers implemented IPv6 multicast routing
 > Need to have different topologies for unicast and multicast
- IPv6 multicast specific routing table (MRIB) was not implemented

>> Need to have same topology for unicast and multicast

The solution of the M6Bone

- Different routers for IPv6 unicast and IPv6 multicast
- IPv6 multicast routers connected together using tunnels
- PIM-SM on all the IPv6 multicast routers
- Global RP (ff00::/8) in Renater

The solution of the M6Bone

RIPng between all the IPv6 multicast routers
 > each site anounces its prefix

- No IPv6 multicast interdomain protocol is implemented
 - >> Only one PIM domain
 - >> RP information learnt with BSR

IPv6 Multicast connection

- Connection by tunnels
 - IPv6 in IPv6
 - IPv6 in IPv4
- Rendezvous Point (RP): Renater

Used equipments

- Routers:
 - Mainly BSD + Kame stack
 - Few 6WIND and CISCO routers
- Workstations : more or less every workstation with IPv6 stack

Used protocols

- PIM SM : Pim Sparse Mode (RFC 2362)
- MLDv1 : Multicast Listener Discovery (RFC 2710)

Steps to connect

- 1. Setup an IPv6 multicast router
- 2. Connect to an M6Bone site using tunnel IPv6 in IPv6 IPv6 in IPv4
- 3. Run PIM Sparse Mode BSR Static configuration
- 4. Run RIPng announce your prefix Receive M6Bone prefixes

The new deployment

End of M6Bone dilemna

MRIB implemented

- Static multicast routes
- MBGP (IPv6 multicast SAFI)

Equipments

- CISCO
- JUNIPER
- 6WIND

>> Equipments can now be used for both IPv6 multicast and unicast

Deployment status

6NET core IPv6 multicast enabled:

Deployment status

MBGP deployment:

Interconnection with initial M6Bone

Interconnection done at RENATER

Interdomain multicast

- No MSDPv6 available
 - Will never be as bottleneck in IPv4 world
- M6Bone is a single PIM domain
 - Works as few sites connected
 - Static RP configuration
 - BSR in some parts of the network
 - Hierarchical RPs for the moment
 - Global RP managed by RENATER
 - 6NET RP managed at SURFnet
 - Initial M6Bone RP
 - Site RP in Université de Bretagne Sud

Interdomain multicast

Embedded RP for the future

- I-D under discussion at IETF
- A new group-to-RP mapping mechanism
- RP address embedded in IPv6 multicast address
- FF7X::/12 address space
- Tests being made within 6NET project framework
- Flattens the model
 - Need to understand consequences for ISPs and clients

Applications and services

- Videoconferencing : SDR, VIC, RAT...
- Radio broadcast: Freeamp...
- Text exchange : NTE...
- Reflectors:
 - To IPv4 multicast
 - To IPv6 and IPv4 unicast

Contacts

- M6bone-team@renater.fr
- Web-site : http://www.m6bone.net
 - Architecture of the network
 - Information about equipment's configuration
 - Subscription form
- Mailing list : m6bone@ml.renater.fr
 - More than 140 active and experienced people ready to help you

See you soon on the M6Bone !